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Abstract: Agricultural planting optimization under limited land resources and market uncertainties 
represents a critical challenge in rural revitalization. This paper proposes a novel optimization 
approach combining parallel stochastic programming with an improved Slime Mould Algorithm 
(SMA). The methodology introduces a two-subsystem parallel structure to reduce computational 
complexity, and incorporates the newsvendor model concept to handle price uncertainties. The SMA 
is enhanced through Good Lattice Points initialization and lens imaging opposition-based learning 
strategies. Experimental results demonstrate that the improved algorithm achieves superior 
convergence and solution quality compared to traditional methods. The optimization model generates 
significant economic benefits, with the discounted sales scenario showing a 58% profit increase. The 
parallel optimization framework effectively balances computational efficiency and solution quality, 
while the improved SMA shows enhanced exploration and exploitation capabilities. This research 
provides practical guidance for agricultural planning and demonstrates the effectiveness of the 
proposed method in handling complex crop planting optimization problems. 

1. Introduction 
The implementation of rural revitalization strategy constitutes a crucial component in building 

socialism with Chinese characteristics in the new era. In China's modernization process, agricultural 
production efficiency enhancement and rural economic development face numerous challenges[1]. 
Among these challenges, optimizing crop planting structures under limited arable land resources 
remains a critical issue for improving agricultural production efficiency. 

Recent years have witnessed extensive research on crop planting optimization. Regarding 
optimization methodologies, Yang et al.[2]proposed a fuzzy multi-objective linear fractional 
programming approach to address crop planting structure optimization. Adamo et al.[3]employed 
constraint programming techniques to investigate crop planting layout optimization in sustainable 
agriculture, while Li et al.[4]examined agricultural land use structure optimization from the 
perspective of sustainable resource utilization. Given the uncertainties inherent in agricultural 
production, stochastic programming methods have gained widespread application. Notably, Ren et 
al.[5]developed a multi-objective stochastic fuzzy programming method for optimizing agricultural 
water and land resource allocation, and Fu et al.[6]constructed an interval two-stage stochastic robust 
programming model to resolve agricultural multi-water source allocation issues. However, existing 
studies exhibit several limitations: (1) most research is confined to single crops or simple crop 
combinations, lacking comprehensive optimization for complex multi-crop systems; (2) insufficient 
consideration of market uncertainties makes it difficult to address price fluctuation risks; (3) relatively 
limited research on multi-period planting decision problems. 

To address these challenges, this study proposes a crop planting optimization method based on 
stochastic programming and an improved slime mould algorithm. The main innovations include: (1) 
construction of a stochastic programming model with multi-dimensional constraints, capable of 
simultaneously optimizing multiple crop planting schemes; (2)development of a parallel 

2025 11th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2025) 

Copyright © (2025) Francis Academic Press, UK DOI: 10.25236/icmmct.2025.018128



programming strategy based on logical partitioning, effectively reducing computational complexity; 
and (3) design of two algorithm improvement strategies - good lattice point initialization and lens 
imaging opposition-based learning, significantly enhancing solution efficiency.  

2. Methodology 
This section develops a two-stage parallel stochastic programming model for agricultural planting 

optimization, based on an analysis of the problem's demands and constraints.  

2.1. Parallel Optimization via Logical Decomposition 
In crop planting decisions, various factors need to be considered, such as land use, crop selection, 

and regional distribution. If a global optimization model were constructed directly, the large number 
of decision variables would lead to significant computational complexity. To address this, we employ 
a logical decomposition approach to divide the problem into two subsystems: the first subsystem 
handles the planting planning of food crops (excluding rice), while the second subsystem deals with 
other crops (e.g., vegetables, edible fungi). By independently modeling and solving these two 
subsystems in parallel, we can reduce the overall complexity and improve computational efficiency. 

2.2. Stochastic Programming Framework Inspired by the Newsvendor Model 
The core of this problem lies in optimizing crop planting to maximize profits. Given that crop 

prices are uncertain, the idea of the newsvendor model is adapted to this problem. The newsvendor 
model balances the costs of stockouts and overstocking to determine the optimal order quantity, thus 
maximizing expected profit. In the context of this problem, although the sales volume is known, crop 
prices are uncertain and may lead to unsold inventory or discounted sales. Therefore, by incorporating 
price uncertainty, we model the crop planting process using stochastic programming to optimize the 
planting areas of various crops. 

2.3. Mathematical Model for the First Subsystem 
2.3.1. Objective Function Design 

The objective of the first subsystem is to maximize overall profit, taking into account revenue from 
normal sales, discounted sales, and planting costs. The primary decision variables in this model are 
the planting areas of each crop and their corresponding sales volumes. The objective function is 
expressed as follows: 
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Where 𝑉𝑉𝑖𝑖 is the selling price of crop 𝑖𝑖,𝑄𝑄𝑖𝑖 is the predicted sales volume, 𝐶𝐶𝑖𝑖 represents the planting 
cost, 𝑃𝑃𝑖𝑖𝑖𝑖 is the yield of crop 𝑖𝑖 on plot 𝑗𝑗, 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 is the planting area of crop 𝑖𝑖 on plot 𝑗𝑗 during year 𝑡𝑡, 𝑆𝑆 is 
the discount factor, and 𝜆𝜆 is the penalty coefficient.  
2.3.2. Deterministic Approximation of Stochastic Programming 

Due to the randomness of prices, traditional stochastic programming methods can be complex. To 
simplify the problem, we use the Sample Average Approximation (SAA) method to transform the 
stochastic problem into a deterministic one. By drawing 𝑁𝑁 samples 𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑁𝑁 from the uniform 
distribution of prices and approximating the expected value using the average of these samples, the 
objective function becomes: 
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This transformation simplifies the problem, converting a stochastic optimization problem into a 
deterministic one that is easier to solve. 
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2.3.3. Constraints Formulation 
The constraints include land area limitations, crop planting area restrictions, continuity constraints 

on crop planting, and crop rotation requirements for legumes. The specific constraints are as follows: 
Land Area Constraint: The planting area on each plot must not exceed its available area: 
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Crop Planting Area Constraint: The planting area of each crop must meet a minimum area 
requirement: 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑙𝑙𝑏𝑏1 (4) 
Continuous Crop Planting Constraint: Prevent the same crop from being planted continuously on 

the same plot: 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖−1 ⋅ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 0 (5) 

Legume Crop Rotation Constraint: Ensure that each plot grows a legume crop at least once every 
three years: 
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These constraints ensure that the crop planting plan meets agricultural production requirements 
while preventing land resource waste and ecological damage. 

2.3.4. Mathematical Model for the Second Subsystem 
The second subsystem's objective is similar to the first subsystem, aiming to maximize profits. 

The decision variables, objective function, and constraints in the second subsystem follow the same 
structure as those in the first subsystem, with only adjustments in crop identifiers, plot areas, and 
other relevant parameters. 

The specific objective function is: 
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The constraints, including land area, planting area, and crop rotation, are identical to those of the 
first subsystem. 

2.4. Implementation of Improved Slime Mould Algorithm 
Based on the objective function discussed above, this model is classified as a nonlinear 

programming problem, necessitating the use of heuristic optimization algorithms. The Slime Mould 
Algorithm (SMA) is an optimization algorithm that simulates the foraging behavior of slime mould 
in nature. It leverages the slime mould's food source tropism, oscillatory contraction behavior, and 
network adaptability in multi-food source environments to approximate optimal solutions through 
iterative position updates. The core mechanisms can be summarized into three rules: approaching 
food, surrounding food, and acquiring food.  

2.4.1. Basic SMA Steps 
The standard SMA implementation follows these key steps: 

Step 1) Initialization: Randomly generate positions for a group of slime mould individuals in the 
solution space, with population size N, where the i-th slime mould's position is denoted as 𝑥𝑥𝑖𝑖, i = 1, 
2, ..., N. 

Step 2) Fitness Evaluation: Evaluate the fitness 𝑆𝑆(𝑥𝑥𝑖𝑖)of each individual 𝑥𝑥𝑖𝑖  using the objective 
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function of the planning model. 
Step 3) Update weights and parameters according to: 
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a = arctanh(b) (10) 
Where 𝑟𝑟 ∈ [0,1] is a random number, 𝑡𝑡 denotes iteration count, 𝑏𝑏𝑏𝑏 and 𝑤𝑤𝑤𝑤 represent the best and 

worst fitness values in the current iteration.  
Step 4) Update individual positions following: 
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Where 𝑢𝑢𝑢𝑢 and 𝑙𝑙𝑙𝑙 are upper and lower bounds, 𝑋𝑋𝑏𝑏(𝑡𝑡) and 𝑋𝑋(𝑡𝑡) represent the best position and 
current position at iteration 𝑡𝑡,𝑋𝑋𝐴𝐴(𝑡𝑡) and 𝑋𝑋𝐵𝐵(𝑡𝑡) are randomly selected individuals, 𝑣𝑣𝑏𝑏 ∈ [−𝑎𝑎, 𝑎𝑎] and 
𝑣𝑣𝑐𝑐 ∈ [−𝑏𝑏, 𝑏𝑏] are random numbers. 

2.4.2. Good Lattice Points Initialization Strategy 
To address the unstructured nature of the objective function, which precludes gradient-based 

optimization, we employ Good Lattice Points (GLP) initialization. The GLP set for a population of 
size n is constructed as: 

𝑃𝑃𝑛𝑛(𝑖𝑖) = {(𝑟𝑟1𝑖𝑖1, 𝑟𝑟2𝑖𝑖2, … , 𝑟𝑟𝑛𝑛𝑖𝑖𝑛𝑛)}, 𝑖𝑖 = 1,2, … ,𝑛𝑛 (12) 
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The mapping to the feasible domain is given by: 
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Where 𝑎𝑎𝑗𝑗 and 𝑏𝑏𝑗𝑗 represent dimensional bounds. 

2.4.3. Lens Imaging Opposition-Based Learning Strategy 
To combat premature convergence in complex optimization problems, we introduce a lens imaging 

opposition-based learning strategy. Considering a global optimal position 𝑃𝑃  projected from an 
individual 𝑋𝑋𝑏𝑏 of height ℎ, the opposite solution 𝑃𝑃∗ is derived through: 

𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖
2 − 𝑃𝑃

𝑃𝑃∗ − 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖
2

=
ℎ
ℎ∗

(15) 

Setting ℎ
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= 𝑛𝑛 yields: 
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The parameter n is dynamically adjusted according to: 

𝑛𝑛 = (1 + (𝑡𝑡/𝑇𝑇)1/2)10 (17) 
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Where smaller n values generate wider-ranging opposite solutions while larger values produce 
more localized solutions, enabling both exploration and exploitation. 

3. Results and Discussion 
3.1. Crop Planting Optimization Results 

The optimization results for the year 2024 demonstrate significant differences between inventory 
stagnation and discounted sales scenarios. Under the inventory stagnation scenario, the total profit 
reaches 5,867,830.75 yuan, showing only a marginal 2% decrease compared to the 2023 profit of 
5,980,748.25 yuan. In contrast, the discounted sales scenario yields a substantially higher total profit 
of 9,465,955.75 yuan representing a remarkable 58% increase. This significant improvement can be 
primarily attributed to the expanded cultivation area of high-margin crops such as cucumber. 

 

Figure 1 First subsystem: Inventory stagnation (left) and discounted sales (right) 

 

Figure 2 Second subsystem: Inventory stagnation (left) and discounted sales (right) 
The heat maps presented in Fig. 1 and Fig. 2 reveal distinctive patterns in crop allocation across 

both subsystems. The sparse nature of these matrices indicates a concentrated planting strategy, with 
the discounted sales scenario exhibiting slightly more dispersed patterns compared to the inventory 
stagnation case. This dispersion occurs because excess production can still be sold at a discount, 
leading to a redistribution of cultivation areas from low-margin to high-margin crops when the profit 
threshold condition Profithigh = Profitlow/𝑆𝑆 is satisfied. 

3.2. Margin Analysis and Strategic Insights 
A detailed examination of the profit margins, as shown in Table 1, reveals crucial insights into 

optimal crop allocation strategies. 
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Table 1 Profit Margins by Crop Type 

 Rice Chinese 
Cabbage 

White 
Radish 

Red 
Radish 

Poplar 
Mushroom 

Shiitake White 
Mushroom 

Morel 

Margin 
(yuan/mu) 

2820 10500 9500 9250 284500 74000 150000 90000 

The optimization model eliminates rice cultivation due to its low profit margin, enabling expansion 
of high-margin vegetables like Chinese cabbage, white and red radish in irrigated fields. This 
reallocation significantly improves overall profit in the discounted sales scenario, validating our 
model's effectiveness in optimizing crop allocation while balancing profits with practical constraints 
across different agricultural zones and seasons. 

4. Conclusion 
This study presents a novel approach to crop planting optimization by combining stochastic 

programming with an improved Slime Mould Algorithm. The proposed parallel stochastic 
programming framework effectively addresses computational challenges through logical 
decomposition into two subsystems, while the integration of newsvendor model concepts provides 
robust handling of market uncertainties. These findings not only validate the effectiveness of our 
approach in agricultural planning but also provide valuable insights for implementing rural 
revitalization strategies and improving agricultural production efficiency. Future research could 
explore the incorporation of environmental factors, more sophisticated price uncertainty models, and 
climate change impacts, while expanding the application to diverse agricultural planning scenarios 
and geographical regions. 
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